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We propose efficient and accurate numerical methods for computing the ground-state solution of spin-1
Bose-Einstein condensates subjected to a uniform magnetic field. The key idea in designing the numerical
method is based on the normalized gradient flow with the introduction of a third normalization condition,
together with two physical constraints on the conservation of total mass and conservation of total magnetiza-
tion. Different treatments of the Zeeman energy terms are found to yield different numerical accuracies and
stabilities. Numerical comparison between different numerical schemes is made, and the best scheme is iden-
tified. The numerical scheme is then applied to compute the condensate ground state in a harmonic plus optical
lattice potential, and the effect of the periodic potential, in particular to the relative population of each
hyperfine component, is investigated through comparison to the condensate ground state in a pure harmonic
trap.
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I. INTRODUCTION

Since the experimental realizations of Bose-Einstein con-
densation �BEC� in alkali-metal atomic gases in 1995 �1–3�,
extensive theoretical and experimental studies have been
stimulated to investigate various novel phenomena of the
condensates. In earlier BEC experiments, the atoms were
confined in a magnetic trap, in which the spin degree of
freedom is frozen. The particles are described by a scalar
model, and the wave function of the particles is governed by
the Gross-Pitaevskii equation �GPE� within the mean-field
approximation �4–6�. In recent years, experimental achieve-
ments of spin-1 and spin-2 condensates in optical traps
�7–12� have offered new regimes to study a rich variety of
quantum phenomena which are generally absent in a single-
component condensate. In contrast to a single-component
BEC, a spin-F BEC is described by the generalized coupled
GPEs which consist of 2F+1 equations, each governing one
of the 2F+1 hyperfine states �mF=−F ,−F+1, . . . ,F−1,F�
within the mean-field approximation. The formulation was
first carried out by Ho �13� and Ohmi and Machida �14� for
spin-1 condensates and Ciobanu et al. �15�, and Ueda and
Kaoshi �16� for spin-2 condensates.

In the effort at exploring the rich properties of spinor
dynamics, various theoretical studies—e.g., coreless vortices
�17�, quantum tunneling phenomena in double-well poten-
tials �18�, interactions of soliton solutions �19�, the effect of
finite temperature in the context of the Bogoliubov–de
Gennes framework �20�, etc.—have been carried out to date
by several authors. From a numerical point of view, the
simulation of spinor dynamics requires the preparation of
condensates in a certain initial state, which is usually repre-
sented by the condensate ground state under a certain experi-
mental setup. In their first achievement of spin-1 BEC in
23Na, Stenger et al. �7� reported the ground-state phase dia-

gram of a uniform spin-1 condensate in the Thomas-Fermi
regime, with the existence of an external magnetic field. Re-
cently, Murata et al. �21� also studied the broken axisym-
metry phase of spin-1 ferromagnetic condensates subjected
to a certain magnetic field. In numerical studies of spin-1
BEC, Zhang et al. �22� reported the ground-state phase dia-
gram for both 87Rb and 23Na confined in a harmonic trap
subjected to a uniform magnetic field. The imaginary-time
method with several adjustable parameters was applied to
solve the three-component GPEs under the conservation of
total mass and total magnetization.

The imaginary-time method, which is mathematically jus-
tified by the normalized gradient flow, was long known to be
widely used to compute the ground state of single-
component condensates �23–25�. If the method is directly
extended to spin-1 BEC, the two normalization conditions,
conservation of total mass and conservation of total magne-
tization, are insufficient to determine the three normalization
constants in the normalization step. To solve the problem,
Bao and Lim �26� introduced a third normalization condition
based on the relation between the chemical potentials of the
three hyperfine components. The three normalization con-
stants can then be determined explicitly, and the ground state
can be computed in a determinate and efficient way. The aim
of this paper is to extend the method proposed in Ref. �26� to
take the external magnetic field into account as well as to
present its modification to attain better numerical stability in
computing the spin-1 condensate ground state subjected to a
uniform magnetic field. Two different ways of incorporating
the uniform magnetic field in the normalized gradient flow
will be presented. Comparison of the numerical accuracies of
the two numerical methods, combined with the spectrally
accurate sine-pseudospectral discretization �25�, will be
made through various numerical examples. The best numeri-
cal scheme will be identified and applied to compute the
mean-field ground state of a spin-1 BEC in an optical lattice
potential. The effect of the periodic potential as well as the
effect of the mean-field interaction, to the relative population*bao@math.nus.edu.sg
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of each spinor component, as compared to the condensate
ground state in a pure harmonic trap, will also be investi-
gated.

The paper is organized as follows. In Sec. II, the coupled
GPEs for a spin-1 condensate in an external magnetic field
will be reviewed. In Sec. III, we will introduce modified
numerical methods for computing the spin-1 BEC ground
state in a uniform magnetic field. Two different treatments of
the Zeeman energy terms will be considered. In Sec. IV, the
numerical methods are combined with different discretiza-
tion techniques. The numerical accuracies and stabilities of
different combinations will be studied through examples and
the best combination will be identified. In Sec. V, we will
show the application of the method to simulate the spin-1
BEC ground state with ferromagnetic interaction and antifer-
romagnetic interaction, respectively. Finally, concluding re-
marks will be drawn in Sec. VI.

II. MODEL

At a temperature much lower than the critical temperature
Tc, the three-component wave function ��x , t�= (�1�x , t� ,
�0�x , t� ,�−1�x , t�)T, which gives the state of a spin-1 BEC
subjected to a uniform external magnetic field B, is
described by the coupled Gross-Pitaevskii equations
�CGPEs� �13,14,22�

i��t�1 = �H + E1 + c0n + c2�n1 + n0 − n−1���1 + c2�̄−1�0
2,

�1�

i��t�0 = �H + E0 + c0n + c2�n1 + n−1���0 + 2c2�−1�̄0�1,

�2�

i��t�−1 = �H + E−1 + c0n + c2�n−1 + n0 − n1���−1 + c2�0
2�̄1,

�3�

where H=− �2

2m�2+V�x� is the single-particle Hamiltonian
and V�x� is a spin-independent trapping potential. When a
harmonic trap is considered, V�x�= m

2 ��x
2x2+�y

2y2+�z
2z2�,

where �x, �y, and �z are the trapping frequencies in the x, y,
and z directions. nl�x , t�= ��l�x , t��2 is the spatial density of
the hyperfine spin component mF= l �l=−1,0 ,1�, and n=n1

+n0+n−1 is the total density. c0= 4��2

3m �a0+2a2� characterizes
the spin-independent mean-field interaction �positive for re-
pulsive interaction and negative for attractive interaction�,
while c2= 4��2

3m �a2−a0� characterizes the spin-exchange inter-
action �negative for ferromagnetic interaction and positive
for antiferromagnetic interaction� with a0 �a2� the s-wave
scattering length for a scattering channel of total hyperfine
spin 0 �spin 2�. El �l=−1,0 ,1� is the Zeeman energy of spin
component mF= l in the uniform magnetic field. Two param-
eters playing important roles in the ground-state phase dia-
gram as well as the dynamics of spin-1 condensates are the
linear Zeeman energy �7,27,28�

p0 =
1

2
�E1 − E−1� � −

�BB

2
�4�

and the quadratic Zeeman energy

q0 =
1

2
�E1 + E−1 − 2E0� �

�B
2B2

4Ehfs
. �5�

The right-hand sides of �4� and �5� are obtained when the
Breit-Rabi formula is applied. �B is the Bohr magneton, and
Ehfs is the hyperfine splitting.

In order to minimize any possible numerical error that can
be caused by large Zeeman energy when �1�–�3� are solved
numerically, we shift the energy level and set the zero energy
to be E0, which is equivalent to replacing �l→�l exp�−

iE0t

� �
in �1�–�3�. Furthermore, by introducing the dimensionless
variables t→ t /�m with �m=min��x ,�y ,�z�, x→xas with
as=	 �

m�m
, �l→	N�l /as

3/2 �l=−1,0 ,1�, with N being the to-
tal number of particles in the system, the dimensionless
CGPEs are obtained from �1�–�3� as �26,29�

i�t�1 = �H + q + p + �nn + �s�n1 + n0 − n−1���1 + �s�̄−1�0
2,

�6�

i�t�0 = �H + �nn + �s�n1 + n−1���0 + 2�s�−1�̄0�1, �7�

i�t�−1 = �H + q − p + �nn + �s�n−1 + n0 − n1���−1 + �s�0
2�̄1,

�8�

where H=− 1
2�2+V�x� and the dimensionless harmonic trap-

ping potential V�x�= 1
2 �	x

2x2+	y
2y2+	z

2z2� with 	x=
�x

�m
, 	y

=
�y

�m
, and 	z=

�z

�m
. The dimensionless mean-field and spin-

exchange interaction terms are now given by �n=
Nc0

as
3��m

=
4�N�a0+2a2�

as
and �s=

Nc2

as
3��m

=
4�N�a2−a0�

as
, while the linear and

quadratic Zeeman terms are scaled according to p=
p0

��m
and

q=
q0

��m
. Three conserved quantities associated with �6�–�8�

are the normalization of the wave function

N���· ,t�� ª 
��· ,t�
2 =� �
l=−1

1

��l�x,t��2dx = 1, �9�

the total magnetization

M���· ,t�� ª� ���1�x,t��2 − ��−1�x,t��2�dx = M , �10�

and the energy per particle

E���· ,t�� =� �
l=−1

1 �1

2
���l�2 + V�x�nl� +

�n

2
n0

2

+
�n + �s

2
�n1

2 + n−1
2 + 2n0�n1 + n−1��

+ ��n − �s�n1n−1 + �s��̄−1�0
2�̄1 + �−1�̄0

2�1�

+ �q + p�n1 + �q − p�n−1�dx . �11�
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The ground state of a spin-1 BEC, 
g�x�, is given by the
minimizer of the energy functional �11� subjected to con-
straints �9� and �10�—i.e.,

Find �
g�S� such that

Eg ª E�
g� = min

�S

E�
� , �12�

where the nonconvex set S is defined as

S = 
 = ��1,�0,�−1�T�


 = 1,

� ���1�x��2 − ��−1�x��2�dx = M, E�
� � � . �13�

It is easy to show that the ground state is also the lowest-
energy solution of the time-independent CGPEs

�1�1 = �H + q + p + �nn + �s�n1 + n0 − n−1���1 + �s�̄−1�0
2,

�14�

�0�0 = �H + �nn + �s�n1 + n−1���0 + 2�s�−1�̄0�1,

�15�

�−1�−1 = �H + q − p + �nn + �s�n−1 + n0 − n1���−1 + �s�0
2�̄1.

�16�

Here �1, �0, and �−1 are the chemical potentials of the three
components and they satisfy

�1 = � + �, �0 = �, �−1 = � − � , �17�

with � and � being the Lagrange multipliers introduced to
the free-energy functional to conserve N and M, respectively.
The relation between the chemical potentials as given by

�1 + �−1 = 2�0 �18�

plays the key role in the derivation of the third normalization
constant for the normalized gradient flow in computing the
ground-state solution �26�.

III. NUMERICAL METHOD

Since p and q are constants, it is straightforward to apply
the normalized gradient flow in Ref. �26� for computing the
spin-1 BEC ground state in a uniform magnetic field. How-
ever, the linear Zeeman term is always much greater than the
quadratic Zeeman—term, i.e., p�q—and it causes high in-
stability in the numerical scheme. The numerical scheme
does not converge for almost all physically realistic param-
eter values. For this reason, we have to modify the numerical
scheme in Refs. �26,29� for the computation.

We first construct the continuous normalized gradient
flow �CNGF� for a spin-1 BEC in a uniform magnetic field:

�t�1 = − �H + �nn + �s�n1 + n0 − n−1���1 − �s�̄−1�0
2

+ ��
�t� + ��
�t� − p���1 − q�1, �19�

�t�0 = − �H + �nn + �s�n1 + n−1���0

− 2�s�−1�̄0�1 + �
�t��0, �20�

�t�−1 = − �H + �nn + �s�n−1 + n0 − n1���−1 − �s�0
2�̄1

+ ��
�t� − ��
�t� − p���−1 − q�−1, �21�

where �
�t� and �
�t� are functionals of 
= ��1 ,�0 ,�−1�T

and they are chosen such that the above CNGF is mass �or
normalization� and magnetization conserved. The CNGF can
be proven to be energy diminishing for any given initial data.
The linear Zeeman term p is grouped together with �
, act-
ing as a Lagrange multiplier in the energy minimization pro-
cess. A first-order time-splitting scheme will be applied to
the CNGF �19�–�21�, to form the standard normalized gradi-
ent flow for ground-state computation, as well as to find the
third normalization condition. There are two ways to deal
with the quadratic Zeeman energy q during the time-splitting
procedure, and we call the two numerical treatments as pro-
jection with a magnetic field �PWMF� and projection without
a magnetic field �POMF�, respectively.

A. Projection with a magnetic field

The first way to deal with the Zeeman energy is to apply
a first-order time splitting to the CNGF �19�–�21� in discrete
time interval tn−1� t� tn, where tn=n�t with time step �t, in
the following way.

Step 1:

�t�1 = − �H + �nn + �s�n1 + n0 − n−1���1 − �s�̄−1�0
2,

�22�

�t�0 = − �H + �nn + �s�n1 + n−1���0 − 2�s�−1�̄0�1,

�23�

�t�−1 = − �H + �nn + �s�n−1 + n0 − n1���−1 − �s�0
2�̄1.

�24�

Step 2:

�t�1�x,t� = ��
�t� + ��
�t� − p���1 − q�1, �25�

�t�0�x,t� = �
�t��0, tn−1 � t � tn, �26�

�t�−1�x,t� = ��
�t� − ��
�t� − p���−1 − q�−1. �27�

The nonlinear ordinary differential equations �ODEs�
�25�–�27� are equivalent to the projection step

�1�x,tn� ª �1�x,tn
+� = �1

n�1�x,tn
−� , �28�

�0�x,tn� ª �0�x,tn
+� = �0

n�0�x,tn
−� , �29�

�−1�x,tn� ª �−1�x,tn
+� = �−1

n �−1�x,tn
−� , �30�
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where �l�x , tn
��=limt→tn

��l�x , t� �l=−1,0 ,1� and �l
n �l

=−1,0 ,1� are the normalization constants. From the solution
of the nonlinear ODEs �25�–�27�, a third normalization con-
dition for the normalization constants can be derived as �see
derivation in Appendix A�

�1
n�−1

n = e−2q�t��0
n�2. �31�

Together with the two physical conditions on the conserva-
tion of mass and conservation of magnetization, it deter-
mines the three normalization constants as �see details in
Appendix A�

�0
n =

	1 − M2

�N0
− + 	4e−4q�t�1 − M2�N1

−N−1
− + �MN0

−�2�1/2
, �32�

�1
n =	1 + M − ��0

n�2N0
−

2N1
− , �33�

�−1
n =	1 − M − ��0

n�2N0
−

2N−1
− , �34�

where Nl
−= 
�l�· , tn

−�
2 �l=−1,0 ,1�, with �l�· , tn
−� �l

=−1,0 ,1� being the solution of �22�–�24� at t= tn.

B. Projection without a magnetic field

Another approach to deal with the magnetic field is to
retain q in the gradient flow equations instead of including it
in the normalization step. This yields the gradient flow �step
1�

�t�1 = − �H + �nn + �s�n1 + n0 − n−1���1 − �s�̄−1�0
2 − q�1,

�35�

�t�0 = − �H + �nn + �s�n1 + n−1���0 − 2�s�−1�̄0�1,

�36�

�t�−1 = − �H + �nn + �s�n−1 + n0 − n1���−1 − �s�0
2�̄1 − q�−1,

�37�

and the ODEs �step 2�

�t�1�x,t� = ��
�t� + ��
�t� − p���1, �38�

�t�0�x,t� = �
�t��0, tn−1 � t � tn, �39�

�t�−1�x,t� = ��
�t� − ��
�t� − p���−1, �40�

which are equivalent to projection steps �28�–�30�. The nor-
malization constants in this case are given by �26�

�0
n =

	1 − M2

�N0
− + 	4�1 − M2�N1

−N−1
− + �MN0

−�2�1/2
, �41�

�1
n =	1 + M − ��0

n�2N0
−

2N1
− , �42�

�−1
n =	1 − M − ��0

n�2N0
−

2N−1
− . �43�

In fact, when q=0, the derivation of �32�–�34� collapses to
the one for �41�–�43�.

IV. NUMERICAL COMPARISON

In this section, we compute the ground state of a spin-1
BEC confined in a cigar-shaped harmonic oscillator potential
and perform a comparison between the accuracy of the
ground-state solution obtained via the PWMF and POMF
methods. The atoms are tightly confined in two directions
and can be effectively described by one-dimensional �1D�
CGPEs. Both gradient flows �22�–�24� and �35�–�37� can be
discretized by the backward-forward Euler sine-pseudo-
spectral �BFSP� method, which was designed to effectively
solve for the single-component BEC ground state �25�. How-
ever, in order to obtain a complete comparison between dif-
ferent numerical schemes, we apply also the backward Euler
sine-pseudospectral �BESP� discretization �25� to the two
gradient flows. Thus two different projections—i.e., PWMF
and POMF—and two different discretizations—i.e., BFSP
and BESP—give four combinations of numerical schemes:

�i� PWMF+BFSP,
�ii� PWMF+BESP,
�iii� POMF+BFSP,
�iv� POMF+BESP.
In the following, we will compare the accuracy and effi-

ciency of the four schemes. Numerical results obtained using
different time steps are compared to the estimated exact so-
lutions, which are obtained using time step �t=5�10−5. For
the parameter sets we used, all four numerical schemes give
the same results under this time step. In studying the numeri-
cal accuracy, we use the following notation to indicate the
numerical errors: �N1

�t , error in the fractional mass of spin
component mF=1 computed with time step �t, and �E

�t, error
in the total energy computed with time step �t.

For the reference to the readers, the details of BFSP dis-
cretization of the POMF method are attached in Appendix B
and it can be easily generalized to the rest of the numerical
schemes.

A. Ferromagnetic interaction

For the case of a condensate with ferromagnetic interac-
tion, we consider 104 87Rb atoms in a cigar-shaped harmonic
potential with trapping frequencies �x=2��20 Hz and �y
=�z=2��400 Hz. The atomic parameters are given by m
=86.909 u, a0=5.387 nm, a2=5.313 nm, and Ehfs=4.5287
�10−24 J. The uniform magnetic field B �G� is applied in the
z direction, and the effective one-dimensional potential and

parameters are found to be V�x�= 1
2x2, �n=

2�a0+2a2�N
3as

	�y�z

�x

=885.4, �s=
2�a2−a0�N

3as

	�y�z

�x
=−4.1, p=−34 990.6346B, and q

=3.5827B2, where the dimensionless length scaling unit as
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=2.4116 �m and time scaling unit ts=7.958 ms.
Tables I and II compare the accuracy of different numeri-

cal schemes in computing the spin-1 87Rb ground state in a
uniform magnetic field B=1.6707�10−1 G �p=5845.80, q
=0.5� and B=3.7357�10−1 G �p=13071.61, q=0.5�, respec-
tively. As shown in the two tables, scheme 2—i.e., PWMF
with BESP discretization—gives the most accurate results
under a large time step �0.01. When a smaller time step—
e.g., �t�0.001—is used, all four numerical schemes give
good results. In terms of efficiency, the BFSP method is pref-
erable in the case of a smaller time step since it is explicit.

B. Antiferromagnetic interaction

For the case of condensate with antiferromagnetic inter-
action, we consider 104 23Na atoms in the cigar-shaped har-
monic potential with trapping frequencies �x=2��20 Hz

and �y =�z=2��400 Hz. The atomic parameters are m
=22.99 u, a0=2.646 nm, a2=2.911 nm, and Ehfs=1.1739
�10−24 J. The effective one-dimensional potential and pa-
rameters are found to be V�x�= 1

2x2, �n=240.8, �s=7.5, p
=34 990.6346B, and q=13.8216B2, where the dimensionless
length scaling unit as=4.6896 �m and time scaling unit ts
=7.958 ms.

Tables III and IV compare the accuracy of different nu-
merical schemes in computing the spin-1 23Na ground state
in a uniform magnetic field B=8.5059�10−2 G �p
=2976.27, q=0.5� and B=1.9020�10−1 G �p=13071.61, q
=0.5�, respectively. From the two tables, numerical scheme
3—i.e., POMF with BFSP discretization—always gives the
results with the smallest error, in particular the case when the
total magnetization is close to the critical magnetization,
which will be discussed later. Therefore, we conclude that
the POMF method with BFSP discretization is the best for

TABLE I. Comparison of different numerical schemes for computing the spin-1 87Rb ground state in a
uniform magnetic field with Zeeman energies p=5845.80 and q=0.5 �the smallest error is underlined�.

Method �N1

0.01 �E
0.01 �N1

0.001 �E
0.001

M =0.2 PWMF+BFSP 0.018 0.0006 0.002 0.0001

PWMF+BESP 0.007 0� 0.001 0.0001

N1=0.306 POMF+BFSP 0.015 0.0005 0.003 0

E=−1132.9770 POMF+BESP 0.015 0.0005 0.002 0

M =0.5 PWMF+BFSP 0.007 0.0002 0.001 0.0001

PWMF+BESP 0.004 0.0001 0� 0.0001

N1=0.535 POMF+BFSP 0.007 0.0004 0.001 0.0001

E=−2886.7040 POMF+BESP 0.015 0.0013 0.002 0.0001

M =0.8 PWMF+BFSP 0.001 0.0002 0 0.0001

PWMF+BESP 0.003 0.0001 0 0.0001

N1=0.805 POMF+BFSP 0.001 0.0002 0 0.0001

E=−4640.4221 POMF+BESP 0.005 0.0009 0 0.0001

TABLE II. Comparison of different numerical schemes for computing the spin-1 87Rb ground state in a
uniform magnetic field with Zeeman energies p=13071.61 and q=0.5 �the smallest error is underlined�.

Method �N1

0.01 �E
0.01 �N1

0.001 �E
0.001

M =0.2 PWMF+BFSP 0.006 0.0009 0.001 0

PWMF+BESP 0.002 0.0001 0� 0

N1=0.211 POMF+BFSP 0.014 0.0025 0.002 0

E=−2578.0254 POMF+BESP 0.014 0.0024 0.001 0

M =0.5 PWMF+BFSP 0.002 0.0005 0 0.0001

PWMF+BESP 0� 0.0001 0 0

N1=0.505 POMF+BFSP 0.004 0.0008 0.001 0.0001

E=−6499.3979 POMF+BESP 0.007 0.0017 0.001 0.0001

M =0.8 PWMF+BFSP 0 0.0002 0 0

PWMF+BESP 0 0.0001 0 0

N1=0.801 POMF+BFSP 0 0.0002 0 0

E=−10420.7489 POMF+BESP 0.001 0.0005 0 0
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computing the antiferromagnetic condensate ground state,
for its high accuracy and efficiency in terms of computa-
tional time.

V. APPLICATIONS

The numerical solution of the spin-1 BEC ground state in
a harmonic potential has been discussed in the literature �22�

by a different numerical method. In this section, we apply the
POMF method with BFSP discretization to compute the
spin-1 BEC ground state in a harmonic plus optical lattice
potential. The ground-state solution in a harmonic potential
is used as a reference frame to investigate the influence of
the periodic potential, as well as the effect of interatomic
interaction in the mean-field ground-state solution.

TABLE III. Comparison of different numerical schemes for computing the spin-1 23Na ground state in a
uniform magnetic field with Zeeman energies p=2976.27 and q=0.1 �the smallest error is underlined�.

Method �N1

0.01 �E
0.01 �N1

0.001 �E
0.001

M =0.2 PWMF+BFSP 0.022 0.0008 0.003 0

PWMF+BESP 0.03 0.0012 0.005 0

N1=0.277 POMF+BFSP 0.007 0.0002 0.001 0

E=−579.9371 POMF+BESP 0.046 0.0022 0.007 0

M =0.55 PWMF+BFSP 0.072 0.0032 0.034 0.0002

PWMF+BESP 0.092 0.0057 0.026 0.0005

N1=0.760 POMF+BFSP 0.007 0.0001 0� 0�

E=−1621.5122 POMF+BESP 0.081 0.0042 0.022 0.0003

M =0.6 PWMF+BFSP 0.052 0.0033 0.020 0.0009

PWMF+BESP 0.085 0.0077 0.060 0.0042

N1=0.800 POMF+BFSP 0� 0.0001 0� 0�

E=−1770.3084 POMF+BESP 0.074 0.0060 0.051 0.0031

M =0.8 PWMF+BFSP 0 0.0002 0 0.0001

PWMF+BESP 0.004 0.0013 0 0.0001

N1=0.900 POMF+BFSP 0 0.0001 0 0�

E=−2365.4656 POMF+BESP 0 0.0100 0 0.0100

TABLE IV. Comparison of different numerical schemes for computing the spin-1 23Na ground state in a
uniform magnetic field with Zeeman energies p=6655.15 and q=0.5 �the smallest error is underlined�.

Method �N1

0.01 �E
0.01 �N1

0.001 �E
0.001

M =0.2 PWMF+BFSP 0.004 0.0008 0 0

PWMF+BESP 0.005 0.0011 0 0

N1=0.209 POMF+BFSP 0.001 0.0003 0 0

E=−1315.6122 POMF+BESP 0.012 0.0037 0.001 0

M =0.5 PWMF+BFSP 0.009 0.0019 0.001 0.0001

PWMF+BESP 0.003 0.0003 0 0

N1=0.522 POMF+BFSP 0.003 0.0004 0 0

E=−3311.9032 POMF+BESP 0.013 0.0020 0.001 0

M =0.95 PWMF+BFSP 0.012 0.0017 0.002 0

PWMF+BESP 0.010 0.0012 0.002 0

N1=0.966 POMF+BFSP 0.006 0.0002 0.001 0

E=−6306.3645 POMF+BESP 0.004 0.0002 0 0

M =0.99 PWMF+BFSP 0.002 0.0006 0 0

PWMF+BESP 0.001 0.0004 0 0

N1=0.995 POMF+BFSP 0 0.0001 0 0

E=−6572.5433 POMF+BESP 0 0� 0 0

FONG YIN LIM AND WEIZHU BAO PHYSICAL REVIEW E 78, 066704 �2008�

066704-6



A. Ferromagnetic interaction

Simulations for 87Rb, with the same set of parameters as
in Sec. IV A, are carried out for a harmonic plus optical
lattice potential,

V�x� =
1

2
x2 + V0 sin2��x

2
� , �44�

where V0 is the depth of the optical lattice. Figures 1�a� and
1�b� show the ground-state solutions of spin-1 87Rb �M
=0.3� in the harmonic potential, while Figs. 1�c� and 1�d�
show the ground-state solutions when the periodic potential
with V0=50 is added. The ground state in the potential �44�
can be viewed as the ground state in a harmonic potential
modulated by the periodic function. The relative population
of each spinor component, as shown in Fig. 2, is found to be
almost unaffected by the existence of the optical lattice ex-
cept for the case of small magnetization.

We also investigated the effect of the spin-independent
mean-field interaction—i.e., �n—on the ground-state phase
diagram. Figure 6, below, shows the relative population of
each component for several �n. The interaction is repulsive,
and increasing �n has the similar effect as increasing the
magnitude of the magnetic field, or equivalently, increasing
the quadratic Zeeman energy q.

B. Antiferromagnetic interaction

Simulations for 23Na, with the same set of parameters as
in Sec. IV B, are carried out for the harmonic plus optical
lattice potential �44� with V0=50. Figures 3�a� and 3�b� show
the ground-state solutions of spin-1 23Na �M =0.3� in a har-
monic potential, while Figs. 3�c� and 3�d� show the solutions
when the periodic potential exists. For both potentials, �0 is
immiscible with �1 and �−1. For constant M, the immisci-
bility property is better defined for larger q, with thinner
overlapping layers. In the existence of a periodic potential,

the immiscibility property of the three components is further
enhanced.

Figure 4 depicts the relative population of each hyperfine
component as a function of M and as a function of q, respec-
tively. In the ground-state phase diagram of a condensate
with antiferromagnetic interaction subjected to a weak mag-
netic field, there exists a critical value for magnetization
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FIG. 1. �Color online� Ground state of 87Rb with M =0.3 in a
harmonic potential, �a� q=0.1, �b� q=0.5, and harmonic plus optical
lattice potential, �c� q=0.1, �d� q=0.5.
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FIG. 2. �Color online� �Left� Relative population of each hyper-
fine component of 87Rb in a harmonic potential �dotted line� and a
harmonic plus optical lattice potential �solid line�, subjected to a
magnetic field �a� q=0.05, �b� q=0.2, and �c� q=1.0. �Right� Rela-
tive population of each hyperfine component: �d� mF= +1, �e� mF

=0, and �f� mF=−1 of 87Rb in a harmonic potential �dotted line� and
a harmonic plus optical lattice potential �solid line�, subjected to
magnetic field q=0.1, for �i� M =0, �ii� M =0.1, �iii� M =0.3, �iv�
M =0.5, �v� M =0.7, and �vi� M =0.9.
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�Mc� such that when M �Mc, all three hyperfine components
coexist, and when M �Mc, only components mF= �1 exist.
At M =Mc, the ground state is not unique and two stationary
solutions, one with the three coexisting components and the
other one with zero particles in component mF=0, share the
same energy level. As shown in Fig. 4, the existence of an
optical lattice has the effect of shifting Mc to a smaller value,
or equivalently, shifting the critical value of magnetic field qc
to a larger value when M is held as constant. Computations
are also carried out for an optical lattice of different depths
V0 in �44�, and Mc as a function of q is plotted in Fig. 5. The
critical magnetization Mc is found to decrease with increas-
ing lattice depth.

The effect of the spin-independent mean-field interaction
on the ground-state phase diagram is also investigated for the
antiferromagnetic interaction case. Figure 6 shows the rela-
tive population of each component for several �n. The same
as the ferromagnetic case, increasing �n has a similar effect
as increasing the magnitude of the magnetic field. A large �n
gives a larger critical magnetization. The relation between
Mc and �n is depicted in Fig. 7.

VI. CONCLUSION

In this paper, we proposed a method of normalized gradi-
ent flow to compute the ground state of spin-1 Bose-Einstein
condensates in a uniform magnetic field. Using a similar ap-
proach as the normalized gradient flow for computing the
spin-1 condensate ground state without an external magnetic
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FIG. 4. �Color online� �Left� Relative population of each hyper-
fine component of 23Na in a harmonic potential �dotted line� and a
harmonic plus optical lattice potential �solid line�, subjected to mag-
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harmonic plus optical lattice potential �solid line�, subject to mag-
netic field q=0.1, for �i� M =0, �ii� M =0.1, �iii� M =0.3, �iv� M
=0.5, �v� M =0.7, and �vi� M =0.9.
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field, we found two ways to incorporate the Zeeman energies
with the coupled Gross-Pitaevskii equations numerically: �i�
The PWMF method �both linear and quadratic Zeeman terms
are treated in the normalization step� and �ii� POMF method
�the quadratic Zeeman term is retained in the gradient flow
while the linear Zeeman term is included in the normaliza-
tion step�. In both treatments, the effect of the linear Zeeman
term will finally be canceled out in the third normalization
condition and it has no effect on the ground-state solution.
Numerical results show that the POMF approach with the
backward-forward Euler sine-pseudospectral method is the
best numerical scheme for the ground-state computation, in
terms of accuracy and efficiency.

The condensate ground state in a harmonic plus optical
lattice potential, for the cases of different quadratic Zeeman
energies, is also studied. For a condensate with ferromag-
netic interaction, the existence of an optical lattice makes no
significant difference in the ground-state phase diagram ex-
cept for small M, as compared to the condensate ground state
in a harmonic trap. For a condensate with antiferromagnetic
interaction, the optical lattice tends to reduce the critical
value of the magnetization Mc and Mc can be further reduced
by increasing the lattice depth.
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APPENDIX A: DERIVATION OF THE NORMALIZATION
CONSTANTS FOR THE PWMF METHOD

The solutions of the nonlinear ODEs �25�–�27� can be
expressed as

�1
n = exp��

tn−1

tn

��
 + �
 − p − q�d���1
n−1, �A1�

�0
n = exp��

tn−1

tn

�
d���0
n−1, �A2�

�−1
n = exp��

tn−1

tn

��
 − �
 + p − q�d���−1
n−1, �A3�

where �l
n=�l�x , tn�. This solution suggests the following re-

lation between the three exponential terms:

exp��
tn−1

tn

��
��� + �
��� − p − q�d��
� exp��

tn−1

tn

��
��� − �
��� + p − q�d��
= exp��

tn−1

tn

�2�
��� − 2q�d��
= e−2q�t�exp��

tn−1

tn

�
���d���2

. �A4�

The three exponential terms play the same roles as the nor-
malization constants �l

n �l=1,0 ,−1� and therefore immedi-
ately suggest the third normalization condition �31�. This,
together with the two existing physical constraints on the
total mass and total magnetization,

�
l=−1

1

��l
n�2
�l�· ,tn

−�
2 = 1, �A5�

��1
n�2
�1�· ,tn

−�
2 − ��−1
n �2
�−1�· ,tn

−�
2 = M , �A6�

determines uniquely the normalization constants �l
n �l=1,

0 ,−1� in �28�–�30�. Let Nl
−= 
�l�· , tn

−�
2 �l=−1,0 ,1� and sum-
mimg �A5� and �A6�, we get

2��1
n�2N1

− = 1 + M − ��0
n�2N0

−. �A7�

This immediately implies

�1
n =	1 + M − ��0

n�2N0
−

2N1
− . �A8�

Subtracting �A6� from �A5�, we obtain

2��−1
n �2N−1

− = 1 − M − ��0
n�2N0

−. �A9�

Again, this immediately implies

�−1
n =	1 − M − ��0

n�2N0
−

2N−1
− . �A10�

Multiplying �A8� and �A10� and noticing �31�, we get

�1 + M − ��0
n�2N0

−��1 − M − ��0
n�2N0

−� = 4e−4q�tN−1
− N1

−��0
n�4.

�A11�

Simplifying the above equation, we obtain

��N0
−�2 − 4e−4q�tN−1

− N1
−���0

n�4 − 2N0
−��0

n�2 + �1 − M2� = 0.

�A12�

Solving the above equation and noticing ��0
n�2N0

−� �1−M2�,
we get

��0
n�2 =

N0
− − 	4e−4q�t�1 − M2�N1

−N−1
− + M2�N0

−�2

�N0
−�2 − 4N−1

− N1
−

=
1 − M2

N0
− + 	4e−4q�t�1 − M2�N1

−N−1
− + M2�N0

−�2
.

�A13�

Thus it immediately implies the solution in �32�.

APPENDIX B: BFSP DISCRETIZATION FOR THE
POMF METHOD

We present here the BESP method to discretize the nor-
malized gradient flow �35�–�37� and �28�–�30�. As the trap-
ping potential V�x� grows to infinity at far field, the solution

�x , t� decays to zero exponentially fast when �x�→. Thus
we truncate the problem into a bounded computational do-
main �x �chosen as an interval �a ,b� in 1D, a rectangle

NUMERICAL METHODS FOR COMPUTING THE GROUND… PHYSICAL REVIEW E 78, 066704 �2008�

066704-9



�a ,b�� �c ,d� in 2D, and a box �a ,b�� �c ,d�� �e , f� in 3D,
with �a�, �c�, �e�, b, d, and f sufficiently large� with homoge-
neous Dirichlet boundary conditions.

For simplicity of notation we shall introduce the method
for the case of one spatial dimension �d=1� defined over the
interval �a ,b� with homogeneous Dirichlet boundary condi-
tions. Generalization to higher dimension is straightforward
for tensor product grids, and the results remain valid without
modifications. For d=1, we choose the spatial mesh size h
=�x�0 with h= �b−a� /L, with L being an even positive
integer, and let the grid points be

xl ª a + jh, j = 0,1, . . . ,L .

Let 
 j
n= ��1,j

n ,�0,j
n ,�−1,j

n �T be the approximation of 
�xj , tn�
= (�1�xj , tn� ,�0�xj , tn� ,�−1�xj , tn�)T and 
n be the solution
vector with component 
 j

n. In the discretization, we use the
sine-pseudospectral method for spatial derivatives and back-
ward �forward� Euler scheme for linear �nonlinear� terms in
time discretization. The gradient flow �35�–�37� is dis-
cretized, for j=1,2 , . . . ,L−1 and n�1, as

�1,j
* − �1,j

n−1

�t
=

1

2
�Dxx

s �1
*�xj

− ��1 + q��1,j
* + G1,j

n−1, �B1�

�0,j
* − �0,j

n−1

�t
=

1

2
�Dxx

s �0
*�xj

− �0�0,j
* + G0,j

n−1, �B2�

�−1,j
* − �−1,j

n−1

�t
=

1

2
�Dxx

s �−1
* �xj

− ��−1 + q��−1,j
* + G−1,j

n−1 ,

�B3�

where

G1,j
n−1 = ��1 − V�xj� − ��n + �s����1,j

n−1�2 + ��0,j
n−1�2�

− ��n − �s���−1,j
n−1 �2��1,j

n−1 − �s�̄−1,j
n−1��0,j

n−1�2,

G0,j
n−1 = ��0 − V�xj� − ��n + �s����1,j

n−1�2 + ��−1,j
n−1 �2�

− �n��0,j
n−1�2��0,j

n−1 − 2�s�−1,j
n−1�̄0,j

n−1�1,j
n−1,

G−1,j
n−1 = ��−1 − V�xj� − ��n + �s����−1,j

n−1 �2 + ��0,j
n−1�2�

− ��n − �s���1,j
n−1�2��−1,j

n−1 − �s��0,j
n−1�2�̄1,j

n−1.

Here, Dxx
s , a pseudospectral differential operator approxima-

tion of �xx, is defined as

�Dxx
s U�x=xj

= − �
m=1

L−1

�m
2 �Û�m sin��m�xj − a�� ,

j = 1,2, . . . ,L − 1,

where �Û�m �m=1,2 , . . . ,L−1�, the sine transform coeffi-
cients of the vector U= �U0 ,U1 , . . . ,UL�T satisfying U0=UL
=0, are defined as

�m =
�m

b − a
,

�Û�m =
2

L
�
j=1

L−1

Uj sin��m�xj − a�� , m = 1,2, . . . ,L − 1,

and �l �l=−1,0 ,1� are the stabilization parameters which are
chosen in the optimal form �such that the time step can be
chosen as large as possible� as �25�

�l =
1

2
�bl

max + bl
min�, l = − 1,0,1, �B4�

with

b1
max = max

1�j�L−1
�V�xj� + ��n + �s����1,j

n−1�2 + ��0,j
n−1�2�

+ ��n − �s���−1,j
n−1 �2� ,

b1
min = min

1�j�L−1
�V�xj� + ��n + �s����1,j

n−1�2 + ��0,j
n−1�2�

+ ��n − �s���−1,j
n−1 �2� ,

b0
max = max

1�j�L−1
�V�xj� + ��n + �s����1,j

n−1�2 + ��−1,j
n−1 �2�

+ �n��0,j
n−1�2� ,

b0
min = min

1�j�L−1
�V�xj� + ��n + �s����1,j

n−1�2 + ��−1,j
n−1 �2�

+ �n��0,j
n−1�2� ,

b−1
max = max

1�j�L−1
�V�xj� + ��n + �s����−1,j

n−1 �2 + ��0,j
n−1�2�

+ ��n − �s���1,j
n−1�2� ,

b−1
min = min

1�j�L−1
�V�xj� + ��n + �s����−1,j

n−1 �2 + ��0,j
n−1�2�

+ ��n − �s���1,j
n−1�2� .

The homogeneous Dirichlet boundary conditions are dis-
cretized as

�1,0
* = �1,L

* = �0,0
* = �0,L

* = �−1,0
* = �−1,L

* = 0. �B5�

The projection step �28�–�30� is discretized, for 0� j�L and
n�1, as

�l,j
n = �l

n�
l,j
* , l = − 1,0,1, �B6�

where

�0
n =

	1 − M2

�
�0
*
2 + 	4�1 − M2�
�1

*
2
�−1
* 
2 + M2
�0

*
4�1/2 ,

�B7�

�1
n =

	1 + M − �0
2
�0

*
2

	2
�1
*

, �−1
n =

	1 − M − �0
2
�0

*
2

	2
�−1
*

,

�B8�

with
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�
l
*
2 = h�

j=1

L−1

��
l,j
* �2, l = − 1,0,1.

The linear system �B1�–�B3� can be solved very effi-
ciently by using the fast sine transform. In fact, taking the
discrete sine transform at both sides and solving the system
in phase space, we obtain

��̂1
*�m =

��̂1
n−1�m + �Ĝ1

n−1�m

1 + �t�q + �1 + �m
2 /2�

, �B9�

��̂0
*�m =

��̂0
n−1�m + �Ĝ0

n−1�m

1 + �t��0 + �m
2 /2�

, 1 � m � L , �B10�

��̂−1
* �m =

��̂−1
n−1�m + �Ĝ−1

n−1�m

1 + �t�q + �−1 + �m
2 /2�

. �B11�
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